How do molded case circuit breaker(mccb) work?

Publish Time: Author: Site Editor Visit: 926

At its core, the protection mechanism employed by MCCBs is based on the same physical principles used by all types of thermal-magnetic circuit breakers.

Overload protection is accomplished by means of a thermal mechanism. MCCBs have a bimetallic contact what expands and contracts in response to changes in temperature. Under normal operating conditions, the contact allows electric current through the MCCB. However, as soon as the current exceeds the adjusted trip value, the contact will start to heat and expand until the circuit is interrupted. The thermal protection against overload is designed with a time delay to allow short duration overcurrent, which is a normal part of operation for many devices. However, any overcurrent conditions that last more than what is normally expected represent an overload, and the MCCB is tripped to protect the equipment and personnel.

On the other hand, fault protection is accomplished with electromagnetic induction, and the response is instant. Fault currents should be interrupted immediately, no matter if their duration is short or long. Whenever a fault occurs, the extremely high current induces a magnetic field in a solenoid coil located inside the breaker – this magnetic induction trips a contact and current is interrupted. As a complement to the magnetic protection mechanism, MCCBs have internal arc dissipation measures to facilitate interruption.
 

> Hot Products